

Laboratory of Measurements in Process Engineering

Effects of inclination of a clearancesealed piston prover on the leakage flow rate

Gregor Bobovnik, Jože Kutin

Piston prover

Conclusions

Leakage flow rate
Measurement method
Measuring system
Results

Piston prover

- How does it work?
- Basic equation

$$q_{v} = \frac{V_{m}}{\Delta t} = \frac{\pi D^{2} L_{m}}{4 \Delta t}$$

+

additional corrections

2

Piston prover

Leakage flow rate
Measurement method
Measuring system
Results
Conclusions

Piston prover

Measurement model for gas flow rate

$$q_m = \rho(p_a, T)q_v(p_a, T)$$

$$q_{v}(p_{a},T) = \left(\frac{V_{m}}{\Delta t} + q_{v,l}\right) \varepsilon_{\rho} \longrightarrow \frac{\text{density correction}}{\text{factor}}$$

leakage flow rate

highest uncertainty contribution at smallest flow rates

Leakage flow rate

Poiseuille flow

$$q_{v,l} = \frac{\pi D \delta^3}{12\mu} \frac{\Delta p}{H}$$

Piston prove

Leakage flow rate

Measurement method

Measuring system

Results

Conclusions

 we do **not** know how piston actually travels → it has to be measured

4

Piston prove

Leakage flow rate

Measurement method

Measuring system

Results

Conclusions

Leakage flow rate

correction model (type of fluid, temperature)

Dynamic summation method

Leakage flow rate

Measurement method

Measuring system

Results

Conclusions

test result:

$$q_{v,l} = \frac{1}{N} \sum_{i=1}^{N} q_{v,l,i}, \quad s(q_{v,l}) = \sqrt{\frac{s^2(q_{v,l,i})}{N}} \left(1 + \frac{2(N-1)\hat{R}}{N}\right), \quad N = 10$$

Piston provei

_eakage flow rate

Measurement method

Measuring system

Results

Conclusions

Measuring system

- Sierra Instruments, Cal=Trak SL-800 & SL-800-10, (1.2 – 600) mg/min
- climate chamber (22 °C)
- MFCs
- 3-way valves with pneumatic actuator
- bellows & spirit level
- camera

Leakage flow rate

Measurement method

Measuring system

Results

Conclusions

Measuring system

- inclination in both directions is changed between: $0^{\circ} \rightarrow 5^{\circ} \rightarrow 0^{\circ} \rightarrow -5^{\circ} \rightarrow 0^{\circ}$
- nominal supply mass air flow rate: $q_{m1} \approx q_{m2} \approx 6 \text{ mg/min}$
- air properties were calculated using the REFPROP database
- the tests were fully automatized, with the exception of the inclination adjustment

back-forth

left-right

Measurement method

force

Measuring system

Results

Conclusions

Results

- small variations of measured leakage flow rates \rightarrow path of the piston remains similar
- assuming the piston touches the wall

increased pressure difference

$$\frac{\Delta p_{\theta}}{\Delta p_0} = \cos \left| \theta \right| + k_f \sin \left| \theta \right|$$

idea: relate leakage flow rate with pressure $p = \frac{1}{M} \sum_{i=1}^{M} \frac{p_{1,i} + p_{2,i}}{2}$ inside the flow cell

Leakage flow rate Measurement method Measuring system Results

Conclusions

Conclusions

- piston touches the cylinder wall it slides along the wall
- leakage flow rate in flow cell is related to the increased friction (pressure)
- main drawback: the pressure is measured only at the beginning and at the end of the stroke
- future plans: expand the study to other two flow cells → general correction model

13

Piston prove

Leakage flow rate

Measurement method

Measuring system

Results

Conclusions

14

Piston prove

Leakage flow rate

Measurement method

Measuring system

Results

Conclusions

15

Results

• integrated sensor measures pressure at the beginning (p_1) and the end (p_2) of the stroke

• characteristic pressure:
$$p = \frac{1}{M} \sum_{i=1}^{M} \frac{p_{1,i} + p_{2,i}}{2}$$

 experiments proved that p₁ and p₂ are independent of the flow rate → important, because mass flow rate through the meter changes during tests

Leakage flow rate

Measurement method

Measuring system

Results

16

Conclusions

